Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 308(Pt 3): 136597, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36167208

RESUMO

Microbial fuel cell-anaerobic digestion (MFC-AD) is a new sludge treatment technology with multi-path energy recovery. In this study, Fe0 and MnO2 with gradient concentration were added to investigate its effects on the sludge reduction, electrochemical performance, extracellular polymeric substances (EPS) of sludge, microbial community, electron distribution and energy flow of the MFC-AD system. Results showed that the highest sludge reduction 59% (49%), was obtained at 10 g/L Fe0 (5 g/L MnO2) adding and its total energy recovery efficiency increased by 100% (71%) compare to the control. Different Fe0 and MnO2 concentrations lead to different microbial mechanisms: at 10 g/L Fe0 or 5 g/L MnO2, it prefers to promote extracellular electrons transfer, favoring the Geobacter, Shewanella and Acinetobacter enrichment, while at 5 g/L Fe0 or 0.5 g/L MnO2 it plays a more important role in substrate metabolism of anaerobic digestion, with Clostridium, Roseomonas lacus, and Methylocystis enriched. Correspondingly, the electron quantity distribution from biomass to recovered energy ends (Current, CH4 and VFAs), was influenced by Fe0 and MnO2 concentration, indicating the controllability of the energy flow.


Assuntos
Fontes de Energia Bioelétrica , Anaerobiose , Reatores Biológicos , Compostos de Manganês , Metano/metabolismo , Óxidos , Esgotos/química
2.
Environ Sci Pollut Res Int ; 28(4): 4262-4275, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32935215

RESUMO

L-Threonine and three kinds of conductive polymers were applied for anode modification in microbial fuel cells (MFCs) for decolorization of Congo red with simultaneous electricity generation. The description of modified anodes with FTIR, surface contact angle, and CV analysis showed that the anode surface was successfully grafted with functional groups, with improving wettability, as well as the increasing specific surface area and electrochemical activity. For L-threonine modification, the highest decolorization rate of 97% of the MFC, and meanwhile, the maximum current density of 155.8 mA/m2, was obtained at the modified concentration of 400 mg/L. For conductive polymer modifications, the poly (aniline-1,8-diaminonaphthalene) (short for PANDAN) owned the highest performance, with the current density 185 mA/m2, and the decolorization rate was 97%. Compared with L-threonine, the modifications by conductive polymers were more suitable for MFC decolorization due to their functional groups and unique conductivity. In addition, high-throughput sequencing analysis was conducted for the conductive polymers modified anodes to reveal their bioelectrochemical mechanisms.


Assuntos
Fontes de Energia Bioelétrica , Vermelho Congo , Eletricidade , Eletrodos , Características da Família , Polímeros , Treonina
3.
Artigo em Inglês | MEDLINE | ID: mdl-32012872

RESUMO

The low power generation efficiency of microbial fuel cells (MFCs) is always a barrier to further development. An attempt to enhance the start-up and electricity generation of MFCs was investigated by adding different doses of zero-valent iron into anaerobic anode chambers in this study. The results showed that the voltage (289.6 mV) of A2 with 0.5 g of zero-valent iron added was higher than the reference reactor (197.1 mV) without dosing zero-valent iron (A4). The maximum power density of 27.3 mW/m2 was obtained in A2. CV analysis demonstrated that A2 possessed a higher oxidation-reduction potential, hence showing a stronger oxidizing property. Meanwhile, electrochemical impedance analysis (EIS) also manifested that values of RCT of carbon felts with zero-valent iron supplemented (0.01-0.03 Ω) were generally lower. What is more, SEM images further proved and illustrated that A2 had compact and dense meshes with a hierarchical structure rather than a relatively looser biofilm in the other reactors. High-throughput sequencing analysis also indicated that zero-valent iron increased the abundance of some functional microbial communities, such as Acinetobacter, Ignavibacteriales, Shewanella, etc.


Assuntos
Fontes de Energia Bioelétrica , Ferro , Biofilmes , Eletricidade , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...